

Virtual Simulation 无线通信信道 虛拟仿真实验

】教学引导文字说明

中山大学电子与信息工程学院 电子与信息工程实验教学中心

实验目的

本虚拟仿真实验的目标是,通过LabVIEW软件编程和网络虚拟化 仿真方法,对无线通信信道(尤其是小尺度衰落模型)的建模与仿 真,并配合完整通信链路中的其它模块进行系统性能分析,观察和 理解无线通信信道的衰落对接收信号质量(例如眼图、星座图等)、 接收机部分关键算法(定时、频偏校正、信道均衡等)设计和最终 性能的影响。

实验要求

专业与年级要求

▲ 面向专业:

通信工程、电子信息科学与技术、海洋工程、系统工程与科学。 ▲ 课程年级:

一般安排在大三上学期《通信原理实验》课内,与《通信原理》 理论课同学期开设,该虚拟仿真从实验课1/3课时开始可最长涵盖 到课程结束,总的占比学时为8-10学时。

基本知识和能力要求

▲ 先修课程: 信号与系统, 通信原理, 数字信号处理。

▲ 其它能力: LabVIEW编程,基本的C/C++编程及数据结构。

操作流程

1 学生使用Chrome浏览器登录虚拟仿真实验室官网。

2 学生使用合法注册账号登录虚拟仿真平台。

3 学生选取任课老师所对应的虚拟仿真实验项目。

4 进入实验平台后将会弹出LabVIEW软件界面,学生点击 LabVIEW菜单栏的文件->打开。

5. 选取并打开位于"LabVIEW Data/无线通信信道虚拟仿 真实验"目录下的"无线通信信道虚拟仿真实验.vi",进 人虚拟仿真实验。

6 实验要点一观察无线信道时频域统计特性

- | 6.0 点击左上方,选取"观察无线信道统计参数"面板。
- 6.1 设置信道仿真参数:采样数(默认为50000);采样率(默认为10000),多普勒频移(默认为50);

采样率
10000
采样数
50000
多普勒频移
50

图1 步骤2 参数配置

6.2 点击运行,观察参数:瑞利衰落时域包络波形、瑞利衰落时域包络统计、衰落波形功率谱。

图2 步骤6.3结果示例

7 实验要点二 探究无线信道对QPSK调制解调性能的影响

- Ⅰ 7.0 点击左上方,选取"探究无线信道特性对通信的影响"面板;点击中间选取"无线信道特性"面板。
- Ⅰ 7.1 设置噪声功率为-50dB;频偏为0;多径延时为0、各径幅值为1;不引入瑞利衰落;

		alla.	参数i	殳置	ŀ	
多径时延						
0 0	0	0	0	0	0	
多径幅值						
1 0	0	0	0	0	0	
采样因子			噪声	功率(dB)	
16			-50			□均衡
采样率			多普	動频和	\$	
5000			20			□瑞利信道
同步方式			频偏			
最大能量	★ ∼		0			□ 频偏纠正

图3 步骤7.1参数配置

7.2点击运行,观察理想信道情况下QPSK调制解调的星座图眼图。

图4 步骤7.2结果示例

7.3 设置噪声功率为-15dB;频偏为0;多径延时为0和32、各径幅值为1
和0.2;不引入瑞利衰落;

			1	参数	设置	-	
多径明	娅						
0	32	0	0	0	0	0	
多径	醕						
1	0.2	0	0	0	0	0	
				噪声	功率(dB)	4
16				-15			□均衡
采样率	84			多普	勒频和	5	
5000				20			□瑞利信道
同步7	定			频偏			
最大	能量法	ŧ \	1	0			□频偏纠正

图5 步骤7.3参数配置

■ 7.4 点击运行,观察有噪、简单多径信道情况下QPSK调制解调的星座图 和眼图。

图6 步骤7.4结果示例

7.5 设置噪声功率为-15dB;频偏为0;多径延时为0、各径幅值为1;勾选"瑞利信道"引入瑞利衰落、采样率设为5000、多普勒频移为20;

				参数i	<u> </u>		
多径	时延						
0	0	0	0	0	0	0	
多径	幅值						
1	0	0	0	0	0	0	
采样	因子			噪声	功率((dB)	
16				-15			□均衡
采样	壑			多普	勧频移	B	
5000				20			☑瑞利信道
同步	方式			频偏			
最大	能量法	<u></u> ₹ ~	*	0			□频偏纠正

图7 步骤7.5参数配置

■ 7.6 点击运行,观察有噪时变信道情况下QPSK调制解调的星座图、眼图。

 7.7 设置噪声功率为-15dB;频偏为0;多径延时为0和32、各径幅值为1 和0.3;勾选"瑞利信道"引入瑞利衰落、采样率设为2000、多普勒频移 为20;

图9 步骤7.7参数配置

■ 7.8 点击运行,观察有噪、简单多径、时变信道情况下QPSK调制解调的 星座图、眼图。

图10 步骤7.8结果示例

8 实验要点三 探究无线信道对码元定时同步的影响

- 8.0 点击选择 "码元定时同步与频偏相偏纠正"面板。
- 8.1 设置码元同步方式为"最大能量法";设置噪声功率为-50dB;多 径延时为0、各径幅值为1;不引入瑞利衰落;

				参数	设置	t	
多径时	挻						
0	0	0	0	0	0	0	
多径幅	醕						
1 0 0 0				0	0	0	
采样团	子			噪声	功率(dB)	-
16				-50			□均衡
采样落	8			多普	勒频和	8	
2000				20			□瑞利信道
同步方	र्जन्दी			频偏			
最大的	能量法		*	0			□频偏纠正

图11 步骤8.1参数设置

8.2 点击运行,观察理想信道(无噪声、无衰落)情况下码元定时同步 的效果。

图12 步骤8.2结果示例

8.3 设置码元同步方式为"最大能量法";设置噪声功率为-50dB;多 径延时为0和32、各径幅值为1和0.3;不引入瑞利衰落;

			1	参数	设置		
多径	时延						
0	32	0	0	0	0	0	
多径	幅值						-
1	0.3	0	0	0	0	0	
采样	因子			噪声	功率(dB)	-
16				-50			□均衡
采样	壑			多普	勒频和	5	
200	D			20			□ 瑞利信道
同步	方式			频偏			
最大	能量法	ŧ 、	*	0			□频偏纠正

图13 步骤8.3参数配置

| 8.4 点击运行,观察简单多径信道(以2径信道为例)情况下码元定时同 步的效果。

图14 步骤8.4结果示例

8/12

8.5 设置码元同步方式为"最大能量法";设置噪声功率为-50dB;多径延时为0、各径幅值为1;勾选"瑞利信道"引入瑞利衰落、采样率设为2000、多普勒频移为20;

			14.1	参数	设置	L L	
多径时	挻						
0	0	0	0	0	0	0	
多径幅	値						
1	0	0	0	0	0	0	
				噪声	功率(dB)	
16				-50			□均衡
采样率	K			多普	勒频和	8	
2000				20			☑瑞利信道
同步方	ĴŦĊ			频偏			
最大能	能量法	ŧ ~	*	0			□ 频偏纠正

图15 步骤8.5参数配置

8.6 点击运行,观察时变信道情况下码元定时同步的效果。

图16 步骤8.6结果示例

9 实验要点四 探究无线信道对系统频偏和相偏性能的影响

● 9.1 勾选"频偏纠正";设置噪声功率为-50dB;多径延时为0、各径幅值为1;不引入瑞利衰落;频偏设为0.001;

				参数i	设置		
多径	时延						
0	0	0	0	0	0	0	
多径的	幅值						
1	0	0	0	0	0	0	
采样	因子			噪声	功率((dB)	
16				-50			□均衡
采样	壑			多普	勒频和	<u>s</u>	
2000	D			20			□ 瑞利信道
同步	方式			频偏			
最大	能量法	<u></u> ₹ ~	*	0.00	1		☑频偏纠正

图17 步骤9.1参数配置

9.2 点击运行,观察理想信道情况下频偏、相偏纠正的效果。

图18 步骤9.2结果示例

● 9.3 勾选"频偏纠正";设置噪声功率为-50dB;多径延时为0、各径幅值为1;勾选"瑞利信道"引入瑞利衰落;频偏设为0.001;

0 (0	0	0	0	
0 (0	0	0	0	
0 (0	0	0	0	
0	0	0	0	0	
		噪声现	氻 率(c	iB)	
		-50			□均衡
		多普勒	动频移	;	
		20			☑瑞利信道
		频偏			
\sim		0.00	1		☑频偏纠正
	~	~	-30 多普報 20 频偏 ▼ 0.00	20 多普勒频移 20 频偏 ○.001	250 多普勒频移 20 频偏 ✓ 0.001

图19 步骤9.3参数配置

■ 9.4 点击运行,观察时变信道情况下频偏、相偏纠正的效果。

图20 步骤9.4结果示例

10 实验要点五 探究信道均衡模块对简单多径信道的均衡作用

- ┃ 10.0 选择 "信道均衡"面板。
- Ⅰ 10.1 勾选"均衡";设置噪声功率为-50dB;多径延时为0和32、各径 幅值为1和0.3;不引入瑞利衰落;频偏设为0.001;

			141	参数	设置		
多径时	挻						
0	32	0	0	0	0	0	
多径帧	醕						
1	0.3 0 0 0 0					0	
				噪声	功率(dB)	
16				-50			☑均衡
采样落	85			多普	勒频和	ş	
2000				20			□瑞利信道
同步方	远			频偏			
最大能	能量法		*	0.00)1		□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

图21 步骤10.1参数配置

| 10.2 点击运行,观察信道均衡模块的均衡性能。

图22 步骤10.2结果示例

11 学生将上述所有虚拟仿真实验结果记录存档,并给出分析结果,撰写成报告。

12 实验结束,点击右下方"退出实验"以关闭程序;关闭页面 并登出系统。